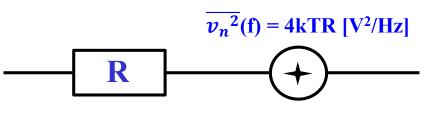
Bruit en électronique Applications: Résistances, circuits RC et AmpliOp

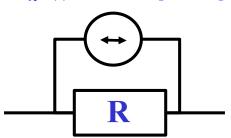
Adil KOUKAB

Outline

- Bruit Thermique des Résistances
- Bruit dans un AmpliOp
- Analyse du bruit dans un circuit électronique
- Ex1: Diviseur résistive
- Ex2: Circuit RC (bruit kT/C)
- Ex3: Circuit à AmpliOp

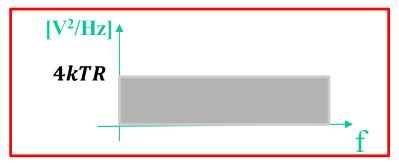


Thermal Noise of a Resistor


Résistance: Agitation Thermique

Mouvement aléatoire de électrons

$$\rightarrow$$
 Bruit en tension d'une DSP: $\overline{v_n^2}(\mathbf{f}) = 4kTR [V^2/Hz]$


Norton representation $\overline{i_n^2}(\mathbf{f}) = 4kT/R [A^2/Hz]$

Avec: k is Boltzmann constant = $1,38 \cdot 10^{-23}$ [j/K]

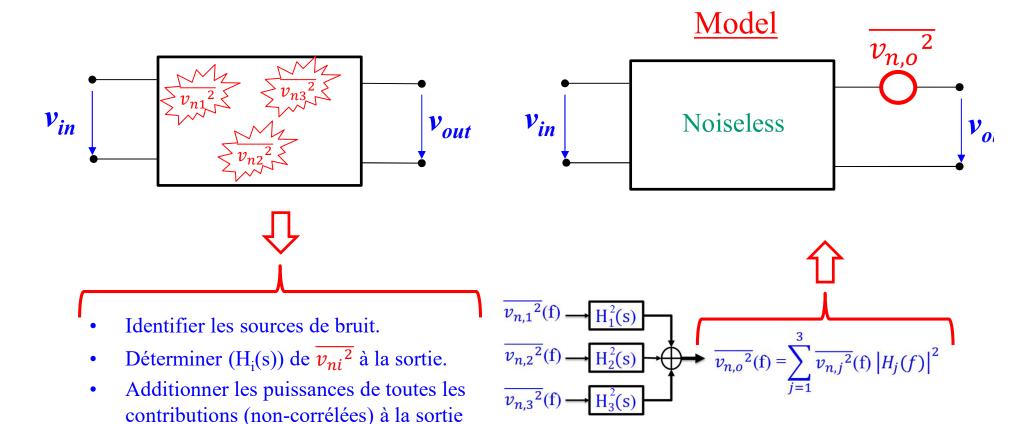
T = Temperature in [°K]

 $R = resistance in \Omega$

Remarque: Le bruit thermique en tension augmente avec T, R et la bande passante.

- Cas particulier: $R = 1 \text{ k}\Omega$ @ 300 °K à un bruit en tension $\sqrt{v_n^2} = \sqrt{4kTR} = 4 \text{ nV}/\sqrt{Hz}$
- \rightarrow pour $R = x k\Omega$ donne $\sqrt{v_n^2} = \sqrt{x}$. 4. nV/ \sqrt{Hz}

Cas de l'ampliOp

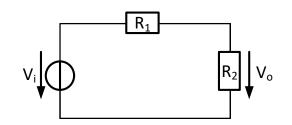


Parameter	Symbol	Conditions	OP37A/E			
			Min	Тур	Max	Unit
Input Offset						
Voltage	Vos	Note 1		10	25	μV
Long-Term	7.5.5.412					
Stability	V _{OS} /Time	Notes 2, 3		0.2	1.0	μV/Mo
Input Offset	Grane.				8.00	
Current	Ios			7	35	nA
Input Bias	GROEX			100	1111	
Current	I_B			±10	±40	nA
Input Noise	000			020220	****	00000000
Voltage	e _{np-p}	1 Hz to 10 Hz ^{3, 5}		0.08	0.18	μV p-p
Input Noise	****			2020	127725	
Voltage Density	e _n	$f_0 = 10 \text{ Hz}^3$		3.5	5.5	
		$f_0 = 30 \text{ Hz}^3$		3.1	4.5	nV/\sqrt{Hz}
		$f_0 = 1000 \text{ Hz}^3$		3.0	3.8	
Input Noise	406.0	Vitas III o es el envigorar			335-94	
Current Density	i _N	$f_O = 10 \text{ Hz}^{3, 6}$ $f_O = 30 \text{ Hz}^{3, 6}$		1.7	4.0	
	5766	$f_0 = 30 \text{ Hz}^{3, 6}$		1.0	2.3	pA/√Hz
		$f_0 = 1000 \text{ Hz}^{3, 6}$		0.4	0.6	4194-410 A 1100 A 2196 B

- Le bruit en sortie de l'AO est produit par tous ses composants.
- On caractérise le bruit total en introduisant trois sources de bruit, une en tension $\overline{v_{n,i}^2}(\mathbf{f})$ et deux en courant $\overline{i_{n,i}^2}(\mathbf{f})$.
- Le bruit en courant n'est important que s'il circule dans une résistance externe à l'AO et donc s'il génère un bruit en tension.

Circuit-Noise Analysis and Modeling Procedure

comme suit:


Outline

- Bruit Thermique des Resistances
- Bruit dans un AmpliOp
- Analyse du bruit dans un circuit électronique
- Ex1: Diviseur résistive
- Ex2: Circuit RC (bruit kT/C)
- Ex3: Circuit à AmpliOp

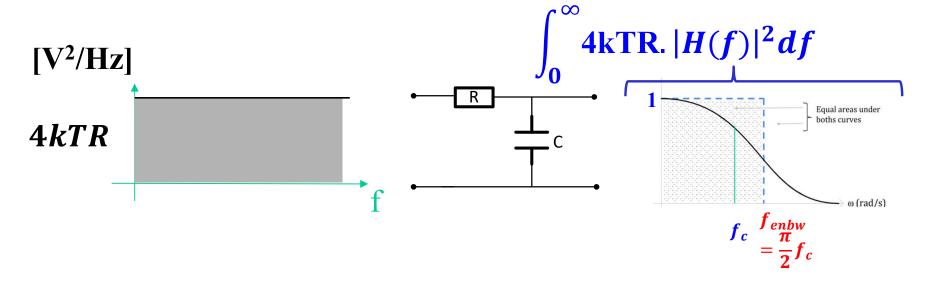
Exemple 1 : diviseur résistive

- Déterminer le bruit à la sortie d'un diviseur résistive (R_1, R_2) et analyser l'impact de chaque résistance.
- Réévaluer cet impact en utilisant de rapport signal sur bruit (SNR).

$$|A_{v}| = \frac{R_2}{R_2 + R_1}$$

$$SNR = \frac{\overline{v_0}^2}{\overline{v_{n,o}}^2} = \frac{\left(\frac{R_2}{R_2 + R_1}\right)^2 \overline{v_i}^2}{\frac{R_2 R_1}{R_2 + R_1} 4kT} = \frac{R_2}{4kTR_1(R_2 + R_1)} \overline{v_i}^2 = \frac{\overline{v_i}^2}{4kT} \frac{1}{R_1\left(1 + \frac{R_1}{R_2}\right)} \quad SNR \nearrow \text{if } R_1 \searrow \text{and } R_2 \nearrow \swarrow$$

Conclusion: L'optimisation du bruit par diminution de R_2 est contre-productive puisqu'elle dégrade encore plus le signal utile

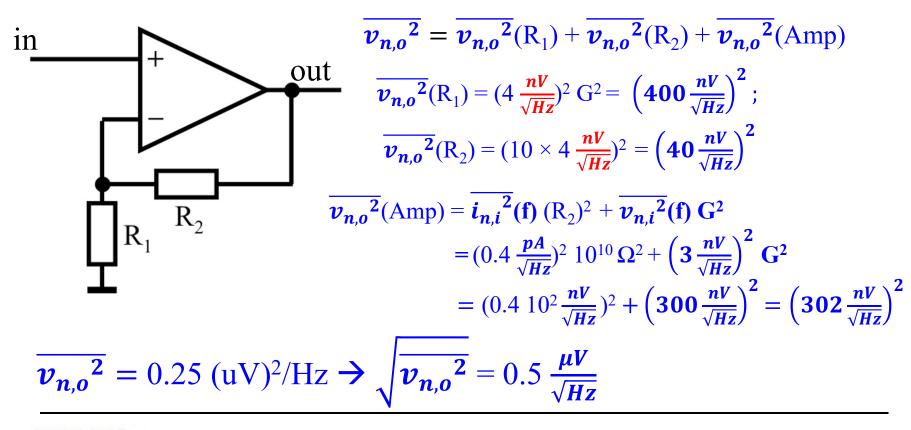

→ Optimiser le SNR est toujours plus judicieuse.

Exemple 2:Circuit RC

• Démontrer que le bruit total à la sortie d'un simple filtre RC passe-bas est:

$$\overline{\boldsymbol{v_n}^2} = \frac{kT}{C}$$

• Explain intuitively why this noise is independent of the value of R:


$$\overline{v_{n,o}}^2 = 4kTRf_{enbw} = 4kTR\frac{\pi}{2}f_c = 4kTR\frac{\pi}{2}\frac{1}{2\pi RC} = \frac{kT}{C}$$

If $R \nearrow \rightarrow$ Noise PSD \nearrow but $f_c \searrow$

Exemple 2:Cas d'un Ampli non-inverseur

• Calculer le bruit en tension $\sqrt{v_{n,o}^2} \left[\mathbf{u} \mathbf{V} / \sqrt{Hz} \right]$ à 1kHz à la sortie d'un ampli non-inverseur de gain $\mathbf{G} \approx 40 \ \mathrm{dB}$ réaliser avec l'AmpliOp OP37 (@ 1kHz: $\overline{v_{n,i}^2}(f) \approx \left(\mathbf{3} \frac{nV}{\sqrt{Hz}} \right)^2$; $\overline{i_{n,i}^2}(f) \approx \left(\mathbf{0} \cdot \mathbf{4} \frac{pA}{\sqrt{Hz}} \right)^2$; bruit 1/f est négligeable à cette fréquence). En prend $\mathbf{R}_1 \approx 1 \mathrm{k}\Omega$ et $\mathbf{R}_2 \approx 100 \mathrm{k}\Omega$.

